Вопрос задан 09.06.2023 в 21:43. Предмет Математика. Спрашивает Ливанов Никита.

В треугольнике АВС угол BAС равен 90°, угол BСА равен 45°, ВС=36√2. Найдите сторону АВ.​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кожухарь Алина.

Відповідь:

36 см

Покрокове пояснення:

1 способ

Так как ABC прямоугольный треугольник, в котором один из острых углов 45, то значит другой угол 90-45=45. Следовательно, треугольник ABC прямоугольный и равнобедренный. Пусть AB=AC=x, тогда используя т.Пифагора:

x^{2} +x^{2} =(36\sqrt{2})^{2}

2x^{2} =36*36*2

x^{2} =36*36

x=36

Следовательно AB=36.

Ответ: 36 см.

2 способ

sin(45)=\frac{AB}{BC}    AB=sin(45)*BC

AB=\frac{\sqrt{2} }{2}*36\sqrt{2}=36 cм

Ответ: 36см

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос