Вопрос задан 04.06.2023 в 06:50. Предмет Математика. Спрашивает Кравченко Дима.

Найдите AUB, AnB, A\B, B\А, если: a) A={-2,-5, 3, 7, 9}, B={-5, 3, 7, 9}; 6) A= (a, b, m, n}, B =

{b, c, d, m, n, t}: B) A={x|xe Z, |x| 2}; r) A=N, B=Z.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Иванова Катя.

а

A \cup B = \{-2,-5,3,7,9\}\\A \cap B = \{-5,3,7,9 \}\\A - B = \{-2\}\\B - A = \{\}

б

A \cup B = \{a,b,c,d,m,n,t\}\\A \cap B = \{b,m,n\}\\A \symbol{92} B = \{a\}\\B \symbol{92} A = \{c,d,t\}

в

Так как множество B не определено в условии:

B = \{\}\\A \cup B = A\\A \cap B = \{\}\\A-B=A\\B-A=\{\}

г

A \cup B = Z\\A \cap B = N\\A - B = \{\} \\B - A = \{ x, x \in Z, x \leq 0\}

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

a) A = {-2, -5, 3, 7, 9}, B = {-5, 3, 7, 9}

a) AUB (union of A and B) = {-2, -5, 3, 7, 9} Explanation: The union of two sets A and B includes all the elements from both sets without repetition.

b) AnB (intersection of A and B) = {-5, 3, 7, 9} Explanation: The intersection of two sets A and B includes the elements that are common to both sets.

c) A\B (set difference of A and B) = {-2} Explanation: The set difference of A and B includes the elements that are in A but not in B.

d) B\A (set difference of B and A) = {} Explanation: The set difference of B and A includes the elements that are in B but not in A. In this case, there are no such elements.

  1. A = {a, b, m, n}, B = {b, c, d, m, n, t}

a) AUB (union of A and B) = {a, b, c, d, m, n, t} Explanation: The union of two sets A and B includes all the elements from both sets without repetition.

b) AnB (intersection of A and B) = {b, m, n} Explanation: The intersection of two sets A and B includes the elements that are common to both sets.

c) A\B (set difference of A and B) = {a} Explanation: The set difference of A and B includes the elements that are in A but not in B.

d) B\A (set difference of B and A) = {c, d, t} Explanation: The set difference of B and A includes the elements that are in B but not in A.

r) A = N (the set of natural numbers), B = Z (the set of integers)

a) AUB (union of A and B) = Z (the set of integers) Explanation: The union of the set of natural numbers and the set of integers includes all the elements from both sets.

b) AnB (intersection of A and B) = N (the set of natural numbers) Explanation: The intersection of the set of natural numbers and the set of integers includes only the elements that are common to both sets, which in this case is the set of natural numbers.

c) A\B (set difference of A and B) = {} Explanation: The set difference of the set of natural numbers and the set of integers includes the elements that are in A but not in B. In this case, there are no such elements.

d) B\A (set difference of B and A) = Z \ N (the set of integers excluding the natural numbers) Explanation: The set difference of the set of integers and the set of natural numbers includes the elements that are in B but not in A, which in this case is the set of integers excluding the natural numbers.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос