
Вопрос задан 04.05.2023 в 02:34.
Предмет Математика.
Спрашивает Мельцына Светлана.
Автомобиль проехал между двумя поселками 30 км со скоростью 60 км\\ч. А обратный путь он проделал
со скоростью 90 км\\ч. Определите его среднюю скорость за всё время движения. Помогите, пожалуйста.

Ответы на вопрос

Отвечает Зубов Михаил.
Дано: расст ---- 30 км
ск.туда ------ 60 км/час
ск. обр. ----- 90 км/ час
Найти: ср. скор. ---? км/час
Решение.
Средняя скорость (Vср. =S/t) -------- весь путь/все время
S = 30 + 30 = 60 (км) ---------- весь путь туда и обратно
t₁ = 30/60 = 1/2 (час) ---------- время туда
t₂ = 30/90 = 1/3 (час) ---------- время обратно
t = t₁ + t₂ = 1/2 + 1/3 = 5/6 (час) ------ общее время
Vср. = 60/(5/6) = 60*6/5 = 72 (км/час)
Ответ: 72 км/час
0
0
ск.туда ------ 60 км/час
ск. обр. ----- 90 км/ час
Найти: ср. скор. ---? км/час
Решение.
Средняя скорость (Vср. =S/t) -------- весь путь/все время
S = 30 + 30 = 60 (км) ---------- весь путь туда и обратно
t₁ = 30/60 = 1/2 (час) ---------- время туда
t₂ = 30/90 = 1/3 (час) ---------- время обратно
t = t₁ + t₂ = 1/2 + 1/3 = 5/6 (час) ------ общее время
Vср. = 60/(5/6) = 60*6/5 = 72 (км/час)
Ответ: 72 км/час



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Средняя скорость вычисляется по формуле:
$$
\bar{v} = \frac{\text{пройденный путь}}{\text{время}}.
$$
В данном случае, пройденный путь составляет $60\text{ км}$ в одну сторону и $60\text{ км}$ обратно, т.е. всего автомобиль проехал $120\text{ км}$.
Время движения можно выразить через скорость и расстояние:
$$
t = \frac{d}{v}.
$$
Таким образом, время движения в одну сторону составляет $\frac{30}{60} = 0.5\text{ часа}$, а обратно - $\frac{30}{90} = 0.33\text{ часа}$. Всего время движения составляет $0.5 + 0.33 = 0.83\text{ часа}$.
Подставляем значения в формулу средней скорости:
$$
\bar{v} = \frac{120\text{ км}}{0.83\text{ часа}} \approx 144.6\text{ км/ч}.
$$
Ответ: $\bar{v} \approx 144.6\text{ км/ч}$.
0
0
$$
\bar{v} = \frac{\text{пройденный путь}}{\text{время}}.
$$
В данном случае, пройденный путь составляет $60\text{ км}$ в одну сторону и $60\text{ км}$ обратно, т.е. всего автомобиль проехал $120\text{ км}$.
Время движения можно выразить через скорость и расстояние:
$$
t = \frac{d}{v}.
$$
Таким образом, время движения в одну сторону составляет $\frac{30}{60} = 0.5\text{ часа}$, а обратно - $\frac{30}{90} = 0.33\text{ часа}$. Всего время движения составляет $0.5 + 0.33 = 0.83\text{ часа}$.
Подставляем значения в формулу средней скорости:
$$
\bar{v} = \frac{120\text{ км}}{0.83\text{ часа}} \approx 144.6\text{ км/ч}.
$$
Ответ: $\bar{v} \approx 144.6\text{ км/ч}$.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili