
Log2(x-5)-log2(x+5)+log2(x^2-25)=0


Ответы на вопрос





To solve this logarithmic equation, we can use the properties of logarithms to simplify the equation and then solve for x.
First, we can combine the first two logarithmic terms using the quotient rule:
log2((x-5)/(x+5)) + log2(x^2-25) = 0
Then, we can use the product rule to combine the two logarithmic terms on the left-hand side:
log2(((x-5)/(x+5)) * (x^2-25)) = 0
Now we can rewrite the equation in exponential form:
2^0 = ((x-5)/(x+5)) * (x^2-25)
Simplifying the left-hand side:
1 = ((x-5)/(x+5)) * (x^2-25)
Multiplying both sides by (x+5):
x+5 = (x-5) * (x^2-25)
Expanding the right-hand side:
x+5 = x^3 - 30x - 25x + 125
Combining like terms:
x^3 - 56x + 120 = 0
We can use the rational root theorem or synthetic division to find that x=4 is a root of the equation. Dividing by (x-4) using synthetic division gives:
x^2 + 4x - 30 = 0
Using the quadratic formula, we find the other two roots to be:
x = (-4 ± sqrt(16 + 120)) / 2
x = (-4 ± sqrt(136)) / 2
x ≈ -9.8 or x ≈ 5.8
Therefore, the solutions to the equation are x = 4, x ≈ -9.8, and x ≈ 5.8.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili