
2 корень из 4 +5х + х^2 <= х +1


Ответы на вопрос

Let's begin by simplifying the left side of the inequality:
2√4 + 5x + x^2 = 2*2 + 5x + x^2 = x^2 + 5x + 4
So we can rewrite the inequality as:
x^2 + 5x + 4 <= x + 1
Moving all terms to the left side, we get:
x^2 + 4x + 3 <= 0
Now we can factor the left side of the inequality:
(x + 3)(x + 1) <= 0
To solve this inequality, we need to consider the sign of each factor and their product in the intervals defined by their roots, which are -3 and -1:
For x < -3, both factors are negative, so their product is positive. For -3 < x < -1, the factor (x+3) is positive and the factor (x+1) is negative, so their product is negative. For x > -1, both factors are positive, so their product is positive.
Therefore, the solution to the inequality is:
-3 <= x <= -1
So the values of x that satisfy the inequality are between -3 and -1, inclusive.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili