Вопрос задан 23.03.2021 в 20:51. Предмет Математика. Спрашивает Севмаш Фок.

Дана арифметическая прогрессия а8 =0.6 а23 2.1 найти разность

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Романов Евгений.
A8=a1+7d
a23=a1+22d
a1+7d=0.6
a1+22d=2.1
a1=0.6-7d
a1=2.1-22d
0.6-7d=2.1-22d
15d=1.5
d=0.1
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи, мы можем использовать формулу общего члена арифметической прогрессии:

an = a1 + (n - 1) * d,

где an - n-й член прогрессии, a1 - первый член прогрессии, n - порядковый номер члена, d - разность прогрессии.

У нас дано два условия:

a8 = 0.6 a23 = 2.1

Используем формулу для этих членов:

a8 = a1 + (8 - 1) * d, 0.6 = a1 + 7d ---(1)

a23 = a1 + (23 - 1) * d, 2.1 = a1 + 22d ---(2)

Из уравнений (1) и (2) можно составить систему уравнений:

0.6 = a1 + 7d 2.1 = a1 + 22d

Вычтем из второго уравнения первое:

2.1 - 0.6 = (a1 + 22d) - (a1 + 7d) 1.5 = 15d

Теперь разделим обе части уравнения на 15:

1.5 / 15 = d 0.1 = d

Таким образом, разность прогрессии равна 0.1.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос