
в ряд укладывают семь карандашей разных цветов. Какова вероятность того, что 3 карандаши
определенных цветов окажутся рядом?

Ответы на вопрос

Всего вариантов разложить карандаши 7! 3 карандаша рядом-это один объект, значит, всего 5 объектов. Также карандаши можно переложить между собой 3! способами. Итого: р= 3!*5!/7!= 3*2/7*6=1/7=0,14 искомая вероятность.



Чтобы определить вероятность того, что 3 карандаша определенных цветов окажутся рядом, мы можем рассмотреть все возможные варианты расположения этих трех карандашей в ряду и поделить их на общее количество возможных вариантов расположения всех карандашей.
Сначала посчитаем общее количество возможных вариантов расположения всех семи карандашей. У нас есть 7 карандашей, поэтому у нас есть 7! (7 факториал) способов уложить их в ряд.
Теперь рассмотрим случаи, когда 3 определенных карандаша находятся рядом. Мы можем рассматривать эти три карандаша как один блок. У нас есть 3! способа уложить эти три карандаша внутри этого блока. Остальные 4 карандаша могут занимать любое из оставшихся 4 мест, поэтому у нас есть 4! способа уложить остальные карандаши.
Таким образом, общее количество вариантов, когда 3 определенных карандаша находятся рядом, равно 3! * 4!.
Таким образом, вероятность того, что 3 карандаша определенных цветов окажутся рядом, составляет:
P = (3! * 4!) / 7!
P ≈ 0.2857 или около 28.57%


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili