
Решите уравнения:1) 2cos10x=12) sin0,2x =-13) sin2x - sinx=0


Ответы на вопрос

1) cos10x=1/2
10x=a cos a=1/2 a=±arccos(1/2)+2*\pi*n=±\pi/3+2*\pi*n n∈Z
a=10x=±\pi/3+2*\pi*n x=±\pi/30+\pi*n/5 n∈Z
2) sin 0.2x=-1 a=0.2x
sin a =-1 a= - pi/2+2*pi*n , a= 3/2*pi+2*pi*n n∈Z
0.2x= -pi/2+2*pi*n x= -5/2*pi+10*pi*n n∈Z
0.2x=3/2*pi+2*pi*n x=15/2*pi+10*pi*n n∈Z
3) sin 2x - sin x=0
2* sin x * cos x - sin x =0 sin x (2* cos x - 1)=0
3.1) sin x =0 x=pi*n n∈Z
3.2) 2cos x =1 cos x =1/2 x=±pi/3+2*pi*n n∈Z



- 2cos(10x) = 1
To solve this equation, we can start by isolating cos(10x) on one side:
2cos(10x) = 1 cos(10x) = 1/2
Now, we need to find the values of x that satisfy this equation. Since the cosine function has a period of 2π, we can use the inverse cosine function (arccos) to find the solutions within one period. The general solution is given by:
10x = arccos(1/2) + 2πn, where n is an integer
We can simplify the equation further:
10x = π/3 + 2πn
Dividing both sides by 10:
x = (π/30) + (2πn)/10 x = π/30 + πn/5
So, the general solution for the equation 2cos(10x) = 1 is:
x = π/30 + πn/5, where n is an integer.
- sin(0.2x) = -1
To solve this equation, we'll isolate sin(0.2x) on one side:
sin(0.2x) = -1
Since the sine function has a period of 2π, we can use the inverse sine function (arcsin) to find the solutions within one period. The general solution is given by:
0.2x = arcsin(-1) + 2πn, where n is an integer
Simplifying the equation:
0.2x = -π/2 + 2πn
Dividing both sides by 0.2:
x = (-π/2)/0.2 + (2πn)/0.2 x = -2.5π + 10πn
So, the general solution for the equation sin(0.2x) = -1 is:
x = -2.5π + 10πn, where n is an integer.
- sin(2x) - sin(x) = 0
To solve this equation, we'll first combine the terms on one side:
sin(2x) - sin(x) = 0
Using the identity sin(A) - sin(B) = 2sin((A-B)/2)cos((A+B)/2), we can rewrite the equation as:
2sin((2x - x)/2)cos((2x + x)/2) = 0
Simplifying further:
2sin(x/2)cos(3x/2) = 0
Now, we have two cases to consider:
Case 1: sin(x/2) = 0
For this case, we have:
x/2 = 0 + πn, where n is an integer
Simplifying:
x = 2πn, where n is an integer
Case 2: cos(3x/2) = 0
For this case, we have:
3x/2 = π/2 + πn, where n is an integer
Simplifying:
x = (2π/3) + (2πn/3), where n is an integer
So, the general solution for the equation sin(2x) - sin(x) = 0 is:
x = 2πn or x = (2π/3) + (2πn/3), where n is an integer.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili