Вопрос задан 04.03.2021 в 10:26. Предмет Математика. Спрашивает Юрьева Юлия.

Сократить дробь 8а-3b+2ab-12 снизу черта деления 4+b+4a+ab

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Федотова Полина.

\frac{8a-3b+2ab-12}{4+b+4a+ab}=\frac{(8a+2ab)+(-3b-12)}{(4+4a)+(b+ab)}=\frac{(8a+2ab)-(3b+12)}{4(1+a)+b(1+a)}=\frac{(8a+2ab)-(12+3b)}{(1+a)(4+b)}=\frac{2a(4+b)-3(4+b)}{(1+a)(4+b)}=

 

\frac{(4+b)(2a-3)}{(1+a)(4+b)}=\frac{2a-3}{1+a}

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы сократить дробь, нужно найти их общие множители и упростить выражение. Рассмотрим числитель и знаменатель отдельно:

Числитель: 8a - 3b + 2ab - 12 Знаменатель: 4 + b + 4a + ab

Факторизуем числитель: 8a - 3b + 2ab - 12 = 4a(2 - 3b) + 2(2 - 3b) = (4a + 2)(2 - 3b)

Факторизуем знаменатель: 4 + b + 4a + ab = (4a + 1)(1 + b)

Теперь у нас есть сокращенная дробь:

(4a + 2)(2 - 3b)

(4a + 1)(1 + b)

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос