Вопрос задан 03.03.2021 в 11:20. Предмет Математика. Спрашивает Байрамгулова Гульсум.

За 3 ручки и 5 карандашей заплатили 11 грн 50 коп.Сколько стоит 1 ручка и 1 карандаш,если карандаш

дешевле ручки на 90 коп? Помогите пожалуйста решить и желательно с уравнением
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Бойченко Дарья.
Пусть х коп. - стоит карандаш,
тогда (х + 90) коп. - стоит ручка.
11 грн 50 коп = 1150 коп
3(х + 90) + 5х = 1150
3х + 270 + 5х = 1150
8х = 1150 - 270
8х = 880
х = 880 : 8
х = 110 (коп.) - стоит один карандаш.
       или
110 коп. = 1 грн 10 коп.
1 грн 10 коп + 90 коп = 2 грн - стоит одна ручка.
Ответ: один карандаш стоит 1 грн 10 коп, одна ручка - 2 грн.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Пусть x обозначает стоимость одной ручки в гривнах, а y обозначает стоимость одного карандаша в гривнах.

Условие гласит, что за 3 ручки и 5 карандашей заплатили 11 грн 50 коп, что можно записать следующим уравнением:

3x + 5y = 11.50 (1)

Также условие гласит, что карандаш дешевле ручки на 90 коп, то есть стоимость одного карандаша на 90 коп меньше стоимости одной ручки:

x - y = 0.90 (2)

Теперь у нас есть система из двух уравнений (1) и (2). Решим ее, используя метод подстановки.

Из уравнения (2) выразим x через y:

x = y + 0.90

Подставим это значение x в уравнение (1):

3(y + 0.90) + 5y = 11.50

Раскроем скобки:

3y + 2.70 + 5y = 11.50

Соберем y-термы вместе:

8y + 2.70 = 11.50

Вычтем 2.70 из обеих сторон:

8y = 8.80

Разделим обе стороны на 8:

y = 1.10

Теперь, чтобы найти x, подставим значение y обратно в уравнение (2):

x = 1.10 + 0.90

x = 2.00

Таким образом, одна ручка стоит 2.00 грн, а один карандаш стоит 1.10 грн.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос