
4log4^2(sin^3x)+8log2(sinx)>=1


Ответы на вопрос





To solve the inequality 4log₄(4²(sin³x)) + 8log₂(sin(x)) ≥ 1, we can simplify it step by step.
Let's start with the logarithmic properties. Using the property logₐ(b^c) = c logₐ(b), we can rewrite the inequality as:
4(2log₄(4)(sin³x)) + 8log₂(sin(x)) ≥ 1
Since logₐ(a) = 1 for any base a, we have:
4(2(sin³x)) + 8log₂(sin(x)) ≥ 1
Simplifying further:
8(sin³x) + 8log₂(sin(x)) ≥ 1
Now, let's work on the logarithmic term. Using the change of base formula, we can rewrite log₂(sin(x)) in terms of the natural logarithm (ln):
log₂(sin(x)) = ln(sin(x)) / ln(2)
Substituting this back into the inequality:
8(sin³x) + 8(ln(sin(x)) / ln(2)) ≥ 1
To simplify the inequality further, let's multiply all terms by ln(2) to eliminate the fraction:
8ln(2)(sin³x) + 8(ln(sin(x)) / ln(2)) * ln(2) ≥ 1 * ln(2)
This simplifies to:
8ln(2)(sin³x) + 8ln(sin(x)) ≥ ln(2)
Combining the terms:
8ln(2)(sin³x) + 8ln(sin(x)) ≥ ln(2)
Now, we can divide both sides of the inequality by 8ln(2):
(sin³x) + ln(sin(x)) ≥ ln(2) / (8ln(2))
Simplifying further:
(sin³x) + ln(sin(x)) ≥ 1/8
This is the simplified form of the given inequality.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili