
1) 3х^2-4-24=0 2) 4=20x-25x^2 3)-25=10x+x^2


Ответы на вопрос

25x^2-20x+4=0
D=400-4*25*4=400-400=0
D=0
x=-b/2a
x=20/50
x=0,4
3)-25=10x+x^2
x^2+10x+25=0
D=100-4*25=100-100=0
D=0
x=-10/2
x=-5



To solve these quadratic equations, let's work on them one by one:
- 3x^2 - 4x - 24 = 0
To solve this equation, we can use the quadratic formula, which states that for an equation in the form of ax^2 + bx + c = 0, the solutions for x are given by:
x = (-b ± √(b^2 - 4ac)) / (2a)
For our equation, a = 3, b = -4, and c = -24. Substituting these values into the quadratic formula, we have:
x = (-(-4) ± √((-4)^2 - 4 * 3 * (-24))) / (2 * 3) x = (4 ± √(16 + 288)) / 6 x = (4 ± √304) / 6
So the solutions to the equation are:
x = (4 + √304) / 6 x = (4 - √304) / 6
- 4 = 20x - 25x^2
To solve this equation, we rearrange it to the standard form:
25x^2 - 20x + 4 = 0
Now, let's use the quadratic formula with a = 25, b = -20, and c = 4:
x = (-(-20) ± √((-20)^2 - 4 * 25 * 4)) / (2 * 25) x = (20 ± √(400 - 400)) / 50 x = (20 ± √0) / 50
Since the discriminant (√(400 - 400)) is zero, the equation has only one solution:
x = 20 / 50 x = 2 / 5 x = 0.4
- -25 = 10x + x^2
Rearranging the equation:
x^2 + 10x + 25 = 0
Using the quadratic formula with a = 1, b = 10, and c = 25:
x = (-10 ± √(10^2 - 4 * 1 * 25)) / (2 * 1) x = (-10 ± √(100 - 100)) / 2 x = (-10 ± √0) / 2
Again, since the discriminant is zero, the equation has only one solution:
x = -10 / 2 x = -5


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili