
Lg(x^2-5x+68)=2(lg16-lg2)


Ответы на вопрос

lg(a/b)=lga-lgb
lg(x^2-5x+68)=lg8^2
2lg8=lg8^2
x^2-5x+68=64
x^2-5x+4=0
x=(5+-√(25-16))/2
x=(5+-3)/2
x1=(5-3)/2=1
x2=(5+3)/2=4



To solve the equation lg(x^2 - 5x + 68) = 2(lg16 - lg2), we can start by simplifying the right side of the equation using the properties of logarithms.
lg16 - lg2 can be simplified as follows: lg16 - lg2 = lg(16/2) = lg8
Now, let's substitute this simplified expression back into the equation:
lg(x^2 - 5x + 68) = 2(lg8)
Next, we can use the property of logarithms that states lg(a) = b is equivalent to 10^b = a. Applying this property to both sides of the equation, we have:
x^2 - 5x + 68 = 10^(2lg8)
Now, let's simplify further:
x^2 - 5x + 68 = 10^(lg64)
Since lg64 = 2, we have:
x^2 - 5x + 68 = 10^2
x^2 - 5x + 68 = 100
Rearranging the equation, we have a quadratic equation:
x^2 - 5x + 68 - 100 = 0
x^2 - 5x - 32 = 0
Now we can solve this quadratic equation by factoring, completing the square, or using the quadratic formula. Let's use the quadratic formula:
x = (-b ± √(b^2 - 4ac)) / (2a)
For our equation, a = 1, b = -5, and c = -32. Substituting these values into the quadratic formula:
x = (-(-5) ± √((-5)^2 - 4(1)(-32))) / (2(1))
Simplifying further:
x = (5 ± √(25 + 128)) / 2
x = (5 ± √153) / 2
Therefore, the solutions to the equation lg(x^2 - 5x + 68) = 2(lg16 - lg2) are:
x = (5 + √153) / 2 and x = (5 - √153) / 2


Топ вопросов за вчера в категории Математика





Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili