Вопрос задан 13.02.2021 в 04:27. Предмет Математика. Спрашивает Шевченко Анастасия.

Найдите наименьшее значение функции y=2+3cos2x

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Никитичева Эмилия.

Шаг 1 - минимальное значение функции cosX = -1

Шаг 2 -минимальное функции у = 3*cosX = - 3.

Шаг 3 - минимальное функции y = 2 + 3*cosX = -3 + 2 = 1

ОТВЕТ: Ymin = 1.

График функции рисунок в приложении.


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения наименьшего значения функции y = 2 + 3cos(2x) мы можем использовать информацию о графике функции косинуса и её амплитуде.

Значение функции y = 2 + 3cos(2x) будет наименьшим, когда значение cos(2x) достигает своего минимального значения, равного -1. В этом случае y принимает своё наименьшее значение.

Так как амплитуда функции cos(2x) равна 1, минимальное значение -1 достигается, когда аргумент cos(2x) равен pi.

Итак, чтобы найти наименьшее значение функции y, мы должны найти значение x, при котором cos(2x) равно -1. Это происходит, когда аргумент cos(2x) равен pi/2, т.е.:

2x = pi/2

x = (pi/2) / 2

x = pi/4

Таким образом, наименьшее значение функции y = 2 + 3cos(2x) достигается при x = pi/4. Подставляя это значение x в исходную функцию, получаем:

y = 2 + 3cos(2 * (pi/4))

y = 2 + 3cos(pi/2)

y = 2 + 3 * 0

y = 2

Итак, наименьшее значение функции y равно 2.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос