
60 баллов. Биссектрисы треугольника ABC пересекают его описанную окружность в точках X, Y, Z.
Радиус вписанной окружности треугольника ABC равен 9. Радиус описанной окружности треугольника ABC равен 20. Найдите отношение площади треугольника ABC к площади треугольника XYZ.


Ответы на вопрос

1. S=Rr(sin A+sin B+sin C).
В самом деле, S=pr=r(a+b+c)/2=
r(Rsin A+Rsin B+Rsin C) по теореме синусов.
2. S=4Rrcos(A/2)·cos(B/2)·cos(C/2).
Преобразуем:
sin A+sin B+sin C=2sin(A+B)/2·cos(A-B)/2+sin(180-A-B)=
2sin(A+B)/2·cos(A-B)/2+2sin(A+B)/2·cos(A+B)/2=
2sin(A+B)/2·(cos(A-B)/2+cos(A+B)/2)=
4sin(180-C)/2·cos(A-B+A+B)/4·cos(A-B-A-B)/4=
4cos (C/2)·cos(A/2)·cos(B/2).
По этой формуле мы запишем площадь треугольника ABC.
Переходим к площади треугольника XYZ. Нам понадобится еще одна формула.
3. S_(XYZ)=2R^2sin X·sin Y·sin Z.
Имеем: S=(xyz)/(4R)=(2Rsin X)(2Rsin Y)(2Rsin Z)/(4R) = то, что надо.
Заметим, что R общее для обоих треугольников, и что углы
X=(B+C)/2; Y=(A+C)/2; Z=(A+B)/2⇒
S_(XYZ)=2R^2sin(B+C)/2·sin(A+C)/2·sin(A+B)/2=
2R^2sin(180-A)/2·sin(180-B)/2·sin(180-C)/2=
2R^2cos(A/2)cos(B/2)cos(C/2).
Поэтому S_(ABC)/S_(XYZ)=(4Rr)/(2R^2)=(2r)/R
Ответ: 39/50


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili