Вопрос задан 01.11.2020 в 21:11. Предмет Математика. Спрашивает Кот-Кусь Артём.

Пожалуйста помогите решить задачу. В магазине были апельсины, всего меньше ста. Сначала их хотели

разложить а упаковки, по 8 штук в каждую, но тогда бы осталось два лишних апельсина. Тогда продавец взял один апельсин для витрины, а остальные апельсины разложил в упаковки, по семь штук в каждой - и лишних апельсинов не осталось. Сколько апельсинов было сначала? Запишите решение и ответ.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Баранова Юля.

Ответ:

50 апельсинов

Пошаговое объяснение:

Пусть сначала было X апельсинов. Тогда по условию число X можно представить в виде:

X = 8·n + 2 или X - 1 = 7·k,

где n и k частные при делении (натуральные числа).

Апельсинов было всего меньше 100. Тогда

8·n + 2 < 100

8·n < 98

n < 12,25.

Выражение X - 1 = 7·k равносильно к X = 7·k + 1. Приравниваем выражения для X:

8·n + 2 = 7·k + 1

8·(n + 1) - 6 = 7·(k + 1) - 6

8·(n + 1)  = 7·(k + 1)

Так как 8 и 7 взаимно простые число, то отсюда следует, что (n + 1) кратно 7. Отсюда n = 6, 13, .... Но из-за ограничения n < 12,25 получим единственное значение n = 6 и значение Х:

X = 8·6 + 2 = 48 + 2 =50.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос