Вопрос задан 09.08.2020 в 08:01. Предмет Геометрия. Спрашивает Пенчукова Виктория.

Медианы am и bn в треугольнике abc пересекаются в точке p. Известно, что ab=cp=4. Кроме того, угол

PAB= 30 градусам, найдите длину отрезка PM
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сулейманова Маргарита.

Ответ: РМ=√3

Объяснение:  

Медианы треугольника пересекаются в одной точке. Следовательно, отрезок СР - часть медианы из С, Продолжим ее до пересечения с АВ в точке К.

  Медианы треугольника точкой пересечения делятся в отношении 2:1, считая от вершины. ⇒ РК=СР:2=4:2=2.

Точка К - середина АВ. ⇒

АК=КВ=2.

 Треугольник АКР равнобедренный ( АК=КР).  

Из К опустим высоту КН на АР. Отрезок КН=АК:2=1 (свойство катета, противолежащего углу 30°).

Тогда АН=НР=КН•ctg30°=√3 ⇒ АР=2√3

По свойству медиан АР:РМ=2:1, поэтому РМ=0.5•23=√3


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос