Вопрос задан 06.08.2020 в 16:13. Предмет Геометрия. Спрашивает Зимина Анастасия.

К окружности с центром О проведены касательные BH и BK(H И k-точки касания).Отрезки BO и KH

пересекаются в точке С.Найдите длину отрезка BK,если BC-8,kh=12
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Savchuk Ivan.
Устная задача... за 50 баллов)))
1) отрезки касательных, проведенных из одной точки к окружности, равны.
2) радиус, проведенный в точку касания, перпендикулярен касательной.
3) центр вписанной в угол окружности лежит на биссектрисе этого угла.
здесь всегда получаются два абсолютно равных прямоугольных треугольника ВОН и ВОК
легко доказывается, что и треугольники ВСН и ВСК тоже абсолютно равные и прямоугольные... (по двум сторонам BH=BK, BC-общая и углу между ними: ВО-биссектриса)))
ВНК равнобедренный и СН=СК ---> ВС _|_ НК
треугольник ВСН (ВСК) - египетский (подобен треугольнику со сторонами 3; 4; 5) его стороны 6; 8; 10

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос