
Точки А, B и прямая MN не лежат в одной плоскости.Доказать, что прямые АВ и MN не пересекаются.


Ответы на вопрос

Предположим обратное, а именно, что прямые АВ и MN пересекаются. Значит через эти две пряммые можно провести плоскость Альфа. Тогда точки А,В лежат в плоскости Альфа, так как если пряммая принадлежит плоскости, то и все ее точки принадлежат этой плоскости. Получается точки А,В и пряммая MN лежат в одной плоскости Альфа. Что противоречит условию. Значит наше предположение неверно, что означает, что прямые АВ и MN не пересекаются. Доказано



1) Точки А и В образуют прямую АВ, которая, ясен пень, принадлежит какой-то плоскости.
2) ПО ОПРЕДЕЛЕНИЮ - если две прямые не лежат в одной плоскости (а это у нас есть в условии), а так же они не параллельны (раз они не дежат в одной плоскости, значит они не могут быть параллельными, т.к. параллельные прямые образуют плоскость) - значит эти прямые не могут пересекаться (т.к. две перескающиеся прямые так же образуют плоскость) !!! Такие прямые называются скрещивающимися!!


Топ вопросов за вчера в категории Геометрия








Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili