Вопрос задан 28.06.2020 в 14:06. Предмет Геометрия. Спрашивает Савушкин Кирилл.

На рисунке AB и AC - касательные к окружности с центром O. Найдите длину отрезка AB, если AC =

24см, а отрезок BM в 2 раза больше отрезка CM.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ефимченко Дима.
Отрезки касательных к окружности, проведенных из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центрокружности ⇒ AM - биссектриса угла CAB

Биссектриса треугольника делит сторону на отрезки, пропорциональные прилежащим сторонам (свойство биссектрисы). 
СМ : BM = AC : AB
BM = 2CM (по условию)
CM : 2CM = 24 : AB
CM/2CM = 24/AB
1/2 = 24/AB

Свойство пропорции - произведение крайних членов равно произведению средних

1* AB = 2*24
AB = 48 (см) 

---------------------------------
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос