
Вопрос задан 28.05.2020 в 02:57.
Предмет Геометрия.
Спрашивает Савушкин Кирилл.
На прямой даны три точки A B C. На отрезке AB построен равносторонний треугольник ABC1, на отрезке
BCпостроен равносторонний треуголӣник BCA1. Точка M середина отрезка AA1,точка N середина отрезка CC1. Доказать что треугольник BMN равносторонний.(Точка B лежит между точками A и C; точки A1 и C1 расположены по одну сторону от прямой АB)

Ответы на вопрос

Отвечает Лумпер Давид.
Треугольники АВА1 и СВС1 равные:
угол АВА1=АВС-А1ВС=180-60=120 и угол СВС1=АВС-АВС1=180-60=120; АВ=ВС1 и А1В=ВС.
ВМ и ВN - это соответствующие медианы. Значит ВМ=ВN, значит углы ВМN и BNM равны. Вершина В у треугольников АВА1 и СВС1 общая. Можно сказать, что это один треугольник, повернутый вокруг центра В на угол АВС1=60 градусов. Значит угол между медианами МВN=60.
Тогда в треугольнике ВМN углы ВМN = BNM =(180-МВN)/2 =60, значит он равносторонний


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili