
Вопрос задан 28.05.2020 в 01:15.
Предмет Геометрия.
Спрашивает Волчкова Алина.
Равнобедренный треугольник с основанием 8 см вписан в окружность радиусом 5 см. Найти площадь этого
треугольника

Ответы на вопрос

Отвечает Борисенков Марат.
Если нарисуем этот вписанный треугольник и проведем высоту, радиус нарисуем от угла основания треугольника к центру окружности, получится, радиус делит высоту на неравные части так, что верхняя часть высоты равна радиусу, а нижнюю можно найти по теореме Пифагора. высота в равнобедренном треугольнике также и медиана, и бисектрисса, поэтому у нас есть прямоугольный треугольник с катетом 4 (тот который является частью основания) и гипотенузой 5. по т. Пифагора второй катет будет 3. (тот который является нижней частью высоты). так как верхняя часть высоты равна радиусу=5, то вся высота=5+3=8. Площадь можно найти по формуле 1/2*высоту*основание=1/2*8*8=4*8=32


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili