
Вопрос задан 22.05.2020 в 08:56.
Предмет Геометрия.
Спрашивает Мальцев Никита.
Около правильного многоугольника со стороной a описана окружность, в многоугольник вписана другая
окружность. Найдите площадь образовавшегося кольца.

Ответы на вопрос

Отвечает Кузьмич Дима.
R - радиус описанной,
r - радиус вписанной
Сторона многоугольника
а=2*sqrt(R^2-r^2)=2*R*sin(A/2)=2*r*tg(A/2)
A - центральный угол, угол из центра многоугольника, "смотрящий" на сторону.
S=pi*R^2
s=pi*r^2
Площадь кольца:
S-s=pi*a^2/4 *(1/sin^2(A/2)-1/tg^2(A/2))=pi*a^2/4
r - радиус вписанной
Сторона многоугольника
а=2*sqrt(R^2-r^2)=2*R*sin(A/2)=2*r*tg(A/2)
A - центральный угол, угол из центра многоугольника, "смотрящий" на сторону.
S=pi*R^2
s=pi*r^2
Площадь кольца:
S-s=pi*a^2/4 *(1/sin^2(A/2)-1/tg^2(A/2))=pi*a^2/4


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili