Вопрос задан 17.05.2020 в 21:41. Предмет Геометрия. Спрашивает Федькович Катя.

В правильной четырехугольной пирамиде диагональ основания равна d. Боковые грани наклонены к

основанию под углом a(альфа). Найдите объем пирамиды.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Корниевич Дмитрий.
Пирамида правильная, значит в основании квадрат, высота проецируется в точку пересечения его диагоналей.
АС = d.
Sabcd = d²/2 - половина произведения диагоналей.
Сторона квадрата:
АВ = АС/√2 = d/√2 = d√2/2
Проведем ОН⊥CD.
ОН = AD/2 = d√2/4 как средняя линия ΔACD.
OH - проекция SH на плоскость основания, значит SH⊥CD по теореме о трех перпендикулярах.
∠SHO = α - линейный угол двугранного угла наклона боковой грани к плоскости основания.
ΔSOH: SO = OH·tgα = d√2/4 · tgα

V = 1/3 ·Sabcd · SO
V = 1/3 · d²/2 · d√2/4 · tgα = d³·tgα / 24
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос