Вопрос задан 09.05.2020 в 22:11. Предмет Геометрия. Спрашивает Куцкий Андрей.

найдите радиус окружности, вписанной в правильный треугольник со стороной 12.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Руженцева Полина.

Радиус вписанной в правильный треугольник окружности раве одной трети высоты этого треугольника.
Можно найти высоту по формуле:
h=а√3):2,

затем разделить на 3. Это и будет искомый радиус.

Из формулы высоты равностороннего треугольника выведена формула радиуса вписанной в него окружности:
r=a:(2√3)
Подставим значение стороны в эту формулу:
r = a:(2√3)=12:2√3=6:√3
Если умножим числитель и знаменатель этой дроби на √3, получим
r=2√3

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос