
Вопрос задан 07.05.2020 в 19:13.
Предмет Геометрия.
Спрашивает Козлова Ксения.
Стороны оснований правильной треугольной усечённой пирамиды равны 8 см и 2 см, а боковое ребро
равно 6 см. Найдите высоту и апофему пирамиды

Ответы на вопрос

Отвечает Головина Алина.
Рассмотрим боковую грань. Это равнобокая трапеция с основаниями 2 и 8, боковые стороны по 6.
Высота этой трапеции - это апофема А пирамиды.
А = √((6² - ((8-2)/2)²) = √(36 - 9) = √27 = 3√3 см.
Теперь проведём осевое сечение пирамиды через боковое ребро.
В сечении - трапеция с основаниями, равными высотам оснований.
У верхнего h = 2(√3/2) = √3 см.
У нижнего h = 8(√3/2) = 4√3 см.
Проекция бокового ребра на основание равна разности (2/3) высот.
Эта величина равна (2/3)*(4√3 - √3) = (2/3)*3√3 = 2√3 см.
Отсюда находим высоту пирамиды.
Н = √(6² - (2√3)²) = √(36 - 12) = √24 = 2√6 см.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili