
Вопрос задан 02.05.2020 в 15:44.
Предмет Геометрия.
Спрашивает Пирахмаев Мага.
Угол при вершине B равнобедренного треугольника ABC равен 108 градусов. Перпендикуляр к биссектрисе
AD этого треугольника, проходящий через точку D, пересекает сторону AC в точке E. Докажите,что DE=BD. Ps Такой вопрос уже задавали 2 года назад, но на него нет ответа.

Ответы на вопрос

Отвечает Галимьянов Ридаль.
Если сторону АВ продолжить до пересечения с перпендикуляром к биссектрисе (в точке Т), получим два равных прямоугольных треугольника (по катету и прилежащему острому углу))) ΔATD = ΔAED
TD = DE
если просто вычислить углы "достроенного" треугольника (72° ---смежный к 108°, 36° ---дополняет 54° до прямого угла))),
то окажется, что он равнобедренный...
BD = TD ---> BD = DE
(((надеюсь, то, что угол ВАС = углу ВСА и потому
ВАD = 18° ---это очевидно из условия)))
TD = DE
если просто вычислить углы "достроенного" треугольника (72° ---смежный к 108°, 36° ---дополняет 54° до прямого угла))),
то окажется, что он равнобедренный...
BD = TD ---> BD = DE
(((надеюсь, то, что угол ВАС = углу ВСА и потому
ВАD = 18° ---это очевидно из условия)))


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili