Вопрос задан 01.05.2020 в 04:18. Предмет Геометрия. Спрашивает Романов Кирилл.

Ребро правильного тетраэдра равно 1. Найдите расстояние от центра окружности описанной около

основания тетраэдра до его боковой грани
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сарсенова Айым.

 

Расстояние от центра описанной около основания этого тетраэдра окружности до грани - перпендикуляр к этой грани.


На рисунке - это отрезок ОК.


Центр описанной около правильного треугольника окружности ( а грани правильного тетраэдра - правильные треугольники) лежит на пересечении высот треугольника на расстоянии одной трети высоты от стороны.


Найдем высоту треугольника по формуле
h=a√3):2, а так как а=1,то
h= √3):2


ОМ=√3):2):3=√3):6


Так как все грани правильного тетраэдра равны,
SM равна h=√3):2


Расстояние КО будем находить из прямоугольного треугольника SОМ
Применим теорему:
Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и отрезком гипотенузы, заключенным между катетом и высотой.


Здесь этот катет - ОМ

 

ОМ²=МК·SM


(√3):6)²=МК·(√3):2)

 

МК=3/36:(√3):2)=6/36):√3=1/6√3

 

ОК²=МО²-КМ²

ОК²=3/36 -1/108=9/108-1/108=8/108=2/27=6/81


ОК =√(6/81)=√6):9

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос