Вопрос задан 30.04.2020 в 08:53. Предмет Геометрия. Спрашивает Сиротюк Наталія.

В прямоугольном параллелепипеде ABCDA1B1C1D1 AB=2, АD=3, AA1= c. Найдите расстояние между прямыми

AB1 и CD1.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Казанцева Марианна.

сделаем построение по условию

дополнительно

параллельный перенос  прямой (BD) в прямую (B1D1)

искомый угол <AB1D1 в треугольнике ∆AB1D1

 

по теореме Пифагора

 

AB1=√(a^2+(3a)^2) =a√(1+9)= a√10

 

B1D1=√(a^2+(2a)^2) =a√(1+4)= a√5

 

AD1=√((2a)^2+(3a)^2) =a√(4+9)= a√13

 

по теореме косинусов

 

AD1^2 = AB1^2+B1D1^2 - 2*AB1*B1D1 * cos<AB1D1

 

(a√13)^2=(a√10)^2 + (a√5)^2 - 2* a√10* a√5 * cos<AB1D1

 

13a^2=10a^2 + 5a^2 -10√2a^2 * cos<AB1D1

 

cos<AB1D1 = 13a^2-(10a^2 + 5a^2) / -10√2a^2 = -2a^2 / -10√2a^2 = √2/10

 

<AB1D1  = arccos (√2/10)

 

Ответ  угол между прямыми BD AB1  arccos (√2/10)

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос