Вопрос задан 22.04.2020 в 19:35. Предмет Геометрия. Спрашивает Биденко Алена.

Медиана,проведенная из вершины прямого угла прямоугольного треугольника 10, а радиус вписанной в

него окружности 4. Найдите сумму катетов.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Белошевский Денис.
Радиус окружности вписанной в прямоугольный треугольник равен 
r = (a+b-c)/2
В нашем случае c = 20 (медиана из вершины прямого угла равна радиусу описанной окружности, а гипотенуза равна диаметру этой окружности).
То есть подставляя значения r и c получаем уравнение:
4 = (a+b-20)/2 
или
8 = a+b-20
или
8+20 = a+b
или
a+b = 28
0 0
Отвечает Глушков Артем.
Гипотенуза равна удвоенной медиане, т.е равна 20.Пусть катеты х и у.Сумма катетов равна двум радиусам +гипотенуза.
2*4+20=(х+у)Ответ:28                                                                                                                Доказательство: Треугольник АВС . О-центр вписанной окружности.Угол В - прямой. К,М,Н - точки касания вписанной окружности и Н - на гипотенузе. Очевидно СН=СМ, а АН=АК (по свойству касательных).МВ=КВ=радиусу, т.к. ВКОМ -квадрат со стороной 4.. Сумма катетов АК+КВ+АМ+МС=28              

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос