Вопрос задан 01.06.2018 в 13:10. Предмет Геометрия. Спрашивает Исламбеков Руслан.

В правильной треугольной пирамиде боковое ребро образует с плоскостью основания угол 60 градусов.

Сторона основания пирамиды равна 8 см. Найдите площадь боковой поверхности пирамиды. Можно подробное решение?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Аскеров Тимур.

Находим высоту h треугольника основания пирамиды:
h = a*cos30° = 8*(√3/2) = 4√3 см.
Проекция бокового ребра на основание равна (2/3)h = (2/3)*4√3 = 8√3/3 см.
Находим высоту Н пирамиды:
H = (2/3)h*tg60° = (8√3/3)*√3 = 8 см.
Апофема А равна:
А = 
√(Н²+((1/3)h)²) = √(8²+(4√3/3)²) = √(64+(48/9)) = √(624/9) = 4√39/3 см.
Теперь находим площадь Sбок боковой поверхности пирамиды:
Sбок = (1/2)РА = (1/2)*(8*3)*(4√39/3) = 16√39 см².

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос