Вопрос задан 15.04.2020 в 17:39. Предмет Геометрия. Спрашивает Якунин Дима.

В равнобедренном треугольнике АВС с основанием АС на медиане ВD отметили произвольную точку М.

Докажите, что: 1) треугольникАМВ=треугольникуСМВ; 2)треугольникАМD=треугольникуСМD.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Астафьева Ника.
1). Треугольники АМВ и СМВ равны по первому признаку равенства треуг-ов: две стороны и угол между ними одного треуг-ка соответственно равны двум сторонам и углу между ними другого:
- АВ=СВ, т.к. АВС равнобедренный;
- ВМ - общая сторона;
- углы АВМ и СВМ равны, т.к. в равнобедренном АВС медиана BD, проведенная к основанию, является также и биссектрисой. 

2). Треугольники AMD и CMD также равны по первому признаку равенства:
- AD=CD, т.к. BD - медиана АВС;
- MD - общая сторона;
- углы ADM и CDM - прямые, т.к. в равнобедренном АВС медиана BD, проведенная к основанию, является также и высотой.
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос