
Вопрос задан 31.05.2018 в 17:15.
Предмет Геометрия.
Спрашивает Варанкина Соня.
В прямоугольном треугольнике abc угол c=90 проведена высота cd и медиана ce. площади треугольников
abc и cde равны соответственно 10 и 3. найти ab Не используя способ из интернета!

Ответы на вопрос

Отвечает На Миша.
Пусть АС=а, ВС=в, АВ=с.
Высота в прямоугольном тр-ке, проведённая к гипотенузе: СД=ав/с.
Площадь тр-ка АВС: S=ав/2=10 ⇒ ав=20.
Площадь тр-ка СДЕ: s=CД·ДЕ/2=ав·ДЕ/2с=10·ДЕ/с ⇒ ДЕ=s·c/10=3c/10.
В прямоугольном тр-ке СДЕ ДЕ²=СЕ²-СД².
СЕ - медиана, проведённая к гипотенузе, значит СЕ=АВ/2=с/2.
ДЕ²=(с/2)²-(20/с)²=(с²/4)-(400/с²)=(с⁴-1600)/4с².
Объединим два полученных уравнения стороны ДЕ, одновременно возведя первое в квадрат:
9с²/100=(с⁴-1600)/4с²,
36с⁴=100с⁴-160000,
64с⁴=160000,
с⁴=2500,
с=√50=5√2 - это ответ.
Не проверял как эта задача решена в интернете. Надеюсь моё решение будет оригинальным.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili