Вопрос задан 30.05.2018 в 22:39. Предмет Геометрия. Спрашивает Геймур Полина.

В прямоугольную трапецию ABCD (АВ перпендикулярна ВС и АD) вписана окружность.Диагонали

пересекаются в точке М. Точка М не совпадает с центром вписанной окружности. Площадь треугольника СМD равна S.Найти радиус вписанной окружности.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Болатов Аргын.

Свойства трапеции: Треугольники, лежащие на боковых сторонах, при пересечении диагоналей, равновеликие.
Если в трапецию вписана окружность с радиусом R и она делит боковую сторону точкой касания на два отрезка - a и b, то R²=a*b.
Отрезок, параллельный основаниям и проходящий через точку пересечения диагоналей, делится последней пополам и равен  2*a*b/(a+b) (среднее гармоническое), где a и b - основания трапеции (формула Буракова).
Итак, площади треугольников АВМ и СМD равны. R² = CG*GD.
Заметим, что CG=FC и GD=HD как касательные из одной точки.
BF=BE=AE=AH = R.
Тогда CF = CG = BC − R, а GD = HD = AD - R.  R² = CG*GD = (BC − R)*(AD - R). Отсюда R=(AD·BC)/(AD+BC).
Вспомним: "Отрезок, параллельный основаниям и проходящий через точку пересечения диагоналей, делится последней пополам и равен  2*a*b/(a+b) (среднее гармоническое), где a и b - основания трапеции (формула Буракова)".
Из этого свойства видим, что половина отрезка (в нашем случае это  отрезок КМ) будет равна ВС*AD/(BC+AD), то есть КМ = R.
Отсюда Sabm = (1/2)*AB*KM = (1/2)*2*R*R = R², откуда R=√S.
Ответ: R = √S.


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос