
Вопрос задан 26.02.2020 в 23:43.
Предмет Геометрия.
Спрашивает Вепрев Данил.
Медианы АА1, ВВ1 и СС1 треугольника АВС пересекаются в точке М. Известно, что АС=3МВ. Докажите, что
треугольник АВС - прямоугольный.Желательно с рисунком.

Ответы на вопрос

Отвечает Книжников Артем.
Без рисунка будет понятно
точка М - пересечение медиан
т.М делит каждую медиану на два отрезка в отношении 2:1,
тогда BM : MB1 = 2 : 1 , тогда MB = 2/3 BB1 <=> BB1 = 3/2 MB
в прямоугольном треугольнике медиана из прямого угла В на гипотенузу равна
радиусу и равна половине гипотенузы, т.е. AC = 2*BB1 = 2* 3/2 MB = 3 МВ
ДОКАЗАНО
точка М - пересечение медиан
т.М делит каждую медиану на два отрезка в отношении 2:1,
тогда BM : MB1 = 2 : 1 , тогда MB = 2/3 BB1 <=> BB1 = 3/2 MB
в прямоугольном треугольнике медиана из прямого угла В на гипотенузу равна
радиусу и равна половине гипотенузы, т.е. AC = 2*BB1 = 2* 3/2 MB = 3 МВ
ДОКАЗАНО


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili