Вопрос задан 06.04.2018 в 13:55. Предмет Геометрия. Спрашивает Саттархан Нуртас.

Из точки, удаленной от плоскости на 12 см, проведены две наклонные. Их проекции перпендикулярны.

Угол между каждой наклонной и плоскостью равен 30. Вычислите расстояние между основаниями наклонных.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Мусатов Александр.

Ясно, что проекции наклонных равны, раз равны углы с плокостью.Поэтому они (проекции наклонных на плоскость) образуют равнобедренный прямоугольный треугольник.Катеты его равны 12*ctg(30) = 12*корень(3);А искомое расстояние является гипотенузой, и равно 12*корень(3)*корень(2) == 12*корень(6).

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос