Вопрос задан 30.05.2018 в 06:21. Предмет Геометрия. Спрашивает Вакилова Аделина.

Объясните мне задачу )решение тут...Задача: Доведіть , що коло (х-2)^2+(y+3)^2=4 дотикається до осі

ординат.Знайдіть координати точки дотику. решение: (во вложении)почему получилась такая координата по игрику ??
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Зорин Даниил.

Здесь в решении сразу ищут координаты точки касания...
а можно еще и доказать, что окружность касается оси ординат (ОУ)
общий вид уравнения окружности: (x - x0)^2 + (y - y0)^2 = R^2 
где х0 и у0 --- координаты центра окружности, R - радиус
посмотрев на уравнение, делаем вывод:
центр окружности находится в точке (2; -3) и радиус = 2
если абсцисса центра = 2 и радиус = 2
(((а радиус перпендикулярен касательной в точке касания))),
просто отметьте точки на плоскости в системе координат.....
то окружность коснется оси ОУ в точке с такой же ординатой, что и центр окружности --- они будут лежать на одной прямой (точка касания и центр окружности) и прямая будет перпендикулярна оси ОУ)))
а в решении у нашли, решив уравнение (y+3)^2 = 0
y+3 = 0
y = -3

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос