
Вопрос задан 30.05.2018 в 06:21.
Предмет Геометрия.
Спрашивает Вакилова Аделина.
Объясните мне задачу )решение тут...Задача: Доведіть , що коло (х-2)^2+(y+3)^2=4 дотикається до осі
ординат.Знайдіть координати точки дотику. решение: (во вложении)почему получилась такая координата по игрику ??


Ответы на вопрос

Отвечает Зорин Даниил.
Здесь в решении сразу ищут координаты точки касания...
а можно еще и доказать, что окружность касается оси ординат (ОУ)
общий вид уравнения окружности: (x - x0)^2 + (y - y0)^2 = R^2
где х0 и у0 --- координаты центра окружности, R - радиус
посмотрев на уравнение, делаем вывод:
центр окружности находится в точке (2; -3) и радиус = 2
если абсцисса центра = 2 и радиус = 2
(((а радиус перпендикулярен касательной в точке касания))),
просто отметьте точки на плоскости в системе координат.....
то окружность коснется оси ОУ в точке с такой же ординатой, что и центр окружности --- они будут лежать на одной прямой (точка касания и центр окружности) и прямая будет перпендикулярна оси ОУ)))
а в решении у нашли, решив уравнение (y+3)^2 = 0
y+3 = 0
y = -3


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili