Вопрос задан 28.01.2020 в 13:07. Предмет Геометрия. Спрашивает Калмыков Вася.

Дан ромб с диагоналями 6 и 8. Найдите радиус окружности, вписанной в ромб.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Лисовская Алина.

Пусть имеем ромб ABCD, т. О - точка пересечения диагоналей

Найдем сторону ромба

AO=OC=6/2=3

DO=OB=8/2=4

(AB)^2=(AO)^2+(OB)^2

(AB)^2=3^2+4^2=9+16=25

AO=sqrt(25)=5- сторона ромба

Площадь ромба равна

S=d1*d2/2=6*8/2=24

С другой стороны площадь ромба равна

S=a*h => h=S/a=24/5=4,8

0 0
Отвечает Тупиков Сергей.
Радиус вписанной окружности r=S/p=d1*d2/(4*a), где a-сторона ромба, d1 и d1 - диагонали ромба
По теореме Пифагора a=корень((d1/2)^2+(d2/2)^2)
Cовмещая, получаем r=d1*d2 / (4*корень((d1/2)^2+(d2/2)^2))
Подставляя заданные значения. получаем r=6*8 / (4*корень((6/2)^2+(8/2)^2)) = 2,4
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос