Вопрос задан 28.01.2020 в 06:08. Предмет Геометрия. Спрашивает Илюкова Инна.

В прямоугольном параллелепипеде АВСDА1В1С1D1: АВ=2, АD=1, АА1=3. Точка М лежит на ребре СС1 так,

что СМ: С1М=5:4. Найти расстояние от точки D1 до плоскости МА1 D.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сергеевич Александр.
Если вписать параллепипед в координатную плоскость D(0,0,0) DA || OY, DC || OX, DD1 || OZ
D(0,0,0), A1(0,1,3), M(2,0,5/3)
Плоскость DA1M имеет вид ax+by+cz+d=0 подсталвяя координаты какой точки D,A1,M
{a*0+b*0+c*0+d=0
{a*0+b*1+c*3+d=0
{a*2+b*0+c*(5/3)+d=0

{d=0
{b=-3c
{a=-5c/6

Откуда вектор нормали имеет координатов n(5/6,3,-1)
Тогда по формуле расстояние от точки D1(0,0,3) равно
l=|(5/6*0+3*0-3)|/sqrt((5/6)^2+3^2+(-1)^2)=18/sqrt(385)

5.0
1 оценка
1 оценка
Оцени!
Оцени!
  • Комментарии
  • Отметить нарушение
Войти чтобы добавить комментарий

Не тот ответ, который тебе нужен?

Не тот ответ, который тебе нужен?

Самые новые вопросы

0 0
Спроси у Chat GPT бесплатно без регистрации!

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Предметы
Задать вопрос