Вопрос задан 27.01.2020 в 21:01. Предмет Геометрия. Спрашивает Милославская Анастасия.

Площадь поверхности сферы,вписанной в конус, равно 100П. Длина окружности, по которой сфера

касается поверхности конуса, равно 6П. Найдите радиус основания конуса
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Пинчук Софья.
Для начала находим радиус сферы их формулы ее площади S = 4*п*R*R, то есть: R = корень(S/(4п)) = корень(100п/4п) = корень(25) = 5

Теперь найдем радиус окружности по которой конус качается сферы из формулы длины окружности: L = 2*п*r или r = L/2п = 6п/2п = 3

Теперь рассмотрим осевое сечение конуса в котором центр вписанной сферы лежит ниже центра окружности касания на величину x = корень(R*R - r*r) = корень(5*5-3*3) = 4

Из подобия треугольников в этом сечении видим, что угол у основания конуса (между образующей и основанием) равен углу между высотой конуса и радиусом вписанной сферы в точку ее касания с боковой поверхностью. То есть синус этого угла ф равен r/R (а косинус x/R)

С другой стороны радиус сферы R и радиус основания Ro относятся как тангенс половины угла ф: tg(ф/2) = R/Ro или  Ro = R/tg(ф/2) 

tg(ф/2) = (1-cos(ф))/sin(ф) = (1-4/5)/(3/5) = 1/3

Получаем окончательно

Ro = 5/(1/3) = 15


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос