
У прямокутному трикутнику гіпотенуза на 4 см менша від суми катетів. Один з катетів дорівнює 8 см.
Знайдіть сторони трикутника

Ответы на вопрос

a=8 см
a²+b²=c²
---
8+b=c+4
64+b²=c²
---
4+b=c
64+b²=(4+b)²
48-8b = 0
b = 6 см
c = 4+b = 10 см



Problem Analysis
We are given a right triangle where the hypotenuse is 4 cm less than the sum of the two legs. One of the legs is 8 cm long. We need to find the lengths of the sides of the triangle.Solution
Let's assume the lengths of the two legs are a and b, and the length of the hypotenuse is c.According to the problem statement, the hypotenuse is 4 cm less than the sum of the two legs. Mathematically, we can express this as:
c = a + b - 4 We are also given that one of the legs is 8 cm long. Let's assume this leg is a. Therefore, we have:
a = 8 Now, we can substitute the value of a from equation into equation to find the value of c:
c = 8 + b - 4 c = b + 4 We have two equations now: equation and equation We can solve these equations simultaneously to find the values of b and c.
Substituting the value of a from equation into equation we get:
c = 8 + b - 4 c = b + 4 [[4]]
Now, we can solve equations and [[4]] simultaneously:
a = 8 c = b + 4 [[4]]
Since we know that the sum of the angles in a triangle is 180 degrees, we can use this information to find the value of b.
Let's assume the right angle is A, the angle opposite to side a is B, and the angle opposite to side c is C.
We have:
A + B + C = 180 [[5]]
Since it is a right triangle, we know that angle A is 90 degrees. Therefore, we can rewrite equation [[5]] as:
90 + B + C = 180 B + C = 90 [[6]]
Now, we can use the fact that the sum of the angles in a triangle is 180 degrees to find the value of b.
In a right triangle, angle B is the complement of angle C. Therefore, we can rewrite equation [[6]] as:
B + (90 - B) = 90 2B = 90 B = 45 [[7]]
Now that we know the value of angle B, we can use trigonometric ratios to find the value of b.
In a right triangle, the sine of an angle is equal to the ratio of the length of the opposite side to the length of the hypotenuse. Therefore, we have:
sin(B) = b / c [[8]]
Substituting the values of B and c from equations [[7]] and [[4]], respectively, into equation [[8]], we get:
sin(45) = b / (b + 4)
Simplifying this equation, we can solve for b:
1 / sqrt(2) = b / (b + 4) b + 4 = b * sqrt(2) 4 = b * sqrt(2) - b 4 = b * (sqrt(2) - 1) b = 4 / (sqrt(2) - 1) [[9]]
Now that we have the value of b, we can substitute it back into equation [[4]] to find the value of c:
c = b + 4 [[4]]
Substituting the value of b from equation [[9]] into equation [[4]], we get:
c = (4 / (sqrt(2) - 1)) + 4
Simplifying this equation, we can solve for c:
c = (4 + 4(sqrt(2) - 1)) / (sqrt(2) - 1) [[10]]
Therefore, the lengths of the sides of the triangle are: - a = 8 cm - b = 4 / (sqrt(2) - 1) cm (approximately 6.83 cm) - c = (4 + 4(sqrt(2) - 1)) / (sqrt(2) - 1) cm (approximately 14.14 cm)
Answer
The lengths of the sides of the triangle are approximately: - a = 8 cm - b = 6.83 cm - c = 14.14 cm

Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili