Вопрос задан 13.01.2020 в 06:30. Предмет Геометрия. Спрашивает Тихомирова Еля.

Гіпотенуза прямокутного трикутника дорівнює 10, а один з катетів 6 см. Висота проведена до

гіпотенуза, дорівнює
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Савотин Михаил.
H-высота.
h= \frac{ab}{c}
Где а и b- это катеты, а с- гипотенуза.
а=6, с=10, b=√10²-6²=8.
h= \frac{ab}{c}= \frac{6*8}{10}= \frac{48}{10}=4,8
Ответ: высота, проведенная к гипотенузе равна 4,8.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Відповідаю детально. Гіпотенуза прямокутного трикутника дорівнює 10 см, а один з катетів 6 см. Висота проведена до гіпотенузи дорівнює h см. Знайдемо другий катет та довжину висоти.

За теоремою Піфагора, другий катет дорівнює √(10^2 - 6^2) = √(100 - 36) = √64 = 8 см. Таким чином, прямокутний трикутник має катети 6 см і 8 см.

За формулою площі прямокутного трикутника, S = (a * b) / 2, де a і b - катети, маємо S = (6 * 8) / 2 = 24 см^2.

За формулою площі трикутника через висоту, S = (c * h) / 2, де c - гіпотенуза, а h - висота, маємо 24 = (10 * h) / 2, звідки h = 4.8 см.

Отже, другий катет прямокутного трикутника дорівнює 8 см, а висота проведена до гіпотенузи дорівнює 4.8 см.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос