Вопрос задан 06.01.2020 в 18:47. Предмет Геометрия. Спрашивает Тореева Наташа.

В четырехугольнике ABCD точки M,N,P,Q соответственно середины сторон AB, BC, CD, DA, докажите, что

отрезки MP и NQ точкой пересечения делятся пополам
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Куанышнияз Биржан.
По теореме Вариньона MNPQ - параллелограмм.
Тогда MP и NQ - диагонали этого параллелограмма. По свойству диагоналей параллелограмма они делятся точкой пересечения пополам. Значит, отрезки MP и NQ точкой пересечения делятся пополам.

P.s.: Теорема Вариньона:
В любом четырёхугольнике отрезки, соединяющие середины смежных сторон, образуют параллелограмм.
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос