Вопрос задан 05.01.2020 в 18:37. Предмет Геометрия. Спрашивает Сычёв Иван.

ДИАГОНАЛЬ ПРАВИЛЬНОЙ ЧЕТЫРЁХУГОЛЬНОЙ ПРИЗМЫ НАКЛОНЕНА К ПЛОСКОСТИ ОСНОВАНИЯ ПОД УГЛОМ 30°. БОКОВОЕ

РЕБРО РАВНО 3. найти площадь основания
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Перерва Марія.
Прямоугольный треугольник, сторонами которого служат диагональ призмы, диагональ основания призмы и высота призмы имеет угол в 30°. Катет, который лежит против этого угла равен 3.
Значит гипотенуза будет 6, это диагональ призмы.
Найдем  диагональ основания призмы: 6²-3²=36-9=27, √27=3√3.
В основании призмы лежит квадрат, обозначим сторону его х. S=х²
х²+х²=27,
2х²=27,
х²=13,5.
Ответ: 13,5 куб. ед.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос