
Вопрос задан 07.07.2019 в 07:42.
Предмет Геометрия.
Спрашивает Кругликов Максик.
1. Отрезки МЕ и РК точкой D делятся пополам. Докажите, что <КМD=<РЕD.2.На сторонах угла D
отмечены точки М и К так, что DМ=DК. Точка Р лежит внутри угла D и РК=РМ. Докажите, что луч DР – биссектриса угла МDК.3. Начертите равнобедренный треугольник АВС с основанием АС и острым углом В. С помощью циркуля и линейки проведите высоту из вершины угла А. к третьему пожалуйста рисунок если можете

Ответы на вопрос

Отвечает Лесуков Иван.
1. MD = DE по условию,
PD = DK по условию,
∠MDK = ∠EDP как вертикальные, ⇒
ΔMDK = ΔEDP по двум сторонам и углу между ними.
В равных треугольниках напротив равных сторон лежат равные углы, значит
∠KMD = ∠PED.
2. DM = DK по условию,
РМ = РК по условию,
DP - общая сторона для треугольников DMP и DKP, ⇒
ΔDMP = ΔDKP по трем сторонам.
В равных треугольниках напротив равных сторон лежат равные углы, значит ∠MDP = ∠KDP, следовательно
DP - биссектриса угла D.
3. Начертим окружность с центром в точке А произвольного радиуса (большего, чем расстояние до прямой ВС). Точки пересечения этой окружности с прямой ВС - К и М.
Начертим две окружности одинакового произвольного радиуса (большего половины отрезка КМ) с центрами в точках К и М.
Через точки пересечения этих окружностей (Е и F) проводим прямую.
EF ∩ BC = H. АН - искомая высота.
Прямая EF всегда пройдет через точку А, так как является серединным перпендикуляром к отрезку КМ, а точка А равноудалена от концов этого отрезка, а значит лежит на серединном перпендикуляре.
PD = DK по условию,
∠MDK = ∠EDP как вертикальные, ⇒
ΔMDK = ΔEDP по двум сторонам и углу между ними.
В равных треугольниках напротив равных сторон лежат равные углы, значит
∠KMD = ∠PED.
2. DM = DK по условию,
РМ = РК по условию,
DP - общая сторона для треугольников DMP и DKP, ⇒
ΔDMP = ΔDKP по трем сторонам.
В равных треугольниках напротив равных сторон лежат равные углы, значит ∠MDP = ∠KDP, следовательно
DP - биссектриса угла D.
3. Начертим окружность с центром в точке А произвольного радиуса (большего, чем расстояние до прямой ВС). Точки пересечения этой окружности с прямой ВС - К и М.
Начертим две окружности одинакового произвольного радиуса (большего половины отрезка КМ) с центрами в точках К и М.
Через точки пересечения этих окружностей (Е и F) проводим прямую.
EF ∩ BC = H. АН - искомая высота.
Прямая EF всегда пройдет через точку А, так как является серединным перпендикуляром к отрезку КМ, а точка А равноудалена от концов этого отрезка, а значит лежит на серединном перпендикуляре.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili