Вопрос задан 25.05.2018 в 17:39. Предмет Геометрия. Спрашивает Смирнова Соня.

Площадь сферической поверхности шарового сектора радиуса R равна площади большого круга шара. Найти

площадь боковой поверхности сектора
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Омаров Алина.

Шаровой сектор представляет собой конус и шаровой сегмент, имеющие одно основание - круг радиусом r. Образующая конуса равна R. Площадь боковой поверхности сектора равна площади боковой пов-ти конуса:

Sбок = ПRr             (1)

Найдем r:

Высота шарового сегмента:

h=R-\sqrt{R^2-r^2}.

Поверхность шарового сегмента равна площади большого круга шара (по условию):

2\pi*R*h=\pi*R^2;\ \ \ 2(R-\sqrt{R^2-r^2})=R.

2\sqrt{R^2-r^2}=R;\ \ \ 4R^2-4r^2=R^2;\ \ \ r=\frac{R\sqrt{3}}{2}.    (2)

Подставив (2) в (1), найдем искомую боковую пов-ть сектора:

S=\frac{\pi*R^2\sqrt{3}}{2}.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос