Вопрос задан 25.05.2018 в 02:00. Предмет Геометрия. Спрашивает Быков Виктор.

СРОЧНО! Угол между высотой и биссектрисой, проведенными из вершины прямого угла прямоугольного

треугольника, равен 8 градусом. Найдите острые углы треугольника.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Жукова Ульяна.

Пусть треугольник АВС с прямым углом С. Биссектриса СК делит угол 90° пополам. Высота СН делит треугольник на два прямоугольных треугольника, в одном из которых острый угол при вершине С равен 
45°+8°=53°, а второй 45°-8°=37° Значит в этих треугольниках вторые острые углы равны 37° и 53° соответственно, так как сумма острых углов в прямоугольном треугольнике равна 90°.
Ответ: острые углы треугольника АВС равны 37° и 53°.

0 0
Отвечает Хроменков Артём.

   "Острые углы прямоугольного треугольника равны 45º+ φ и 45º- φ , где φ — угол между высотой и биссектрисой, проведенными из вершины прямого угла."
   Острые углы прямоугольного треугольника равны:
45+8=53°;
45-8=37°.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос