
Вопрос задан 30.06.2019 в 17:55.
Предмет Геометрия.
Спрашивает Иванова Александра.
Стороны треугольника равны 39 см, 65 см и 80 см. Окружность, центр которой принадлежит больше
стороне треугольника, касается двух других сторон. На какие отрезки центр этой окружности делит сторону треугольника ? с:

Ответы на вопрос

Отвечает Володько Даник.
Проведи отрезок из В до О, Точка О лежит на АС. ВО - биссектриса угла В. По свойству биссектрисы получим АВ/ВС = АО/ОС. 39/65 = Х/(80-Х)
65Х=39(80-Х) 65Х+39Х = 39*80 104Х =3120 Х = 3120/104 Х=30, АО=30,
ОС=80-30=50
65Х=39(80-Х) 65Х+39Х = 39*80 104Х =3120 Х = 3120/104 Х=30, АО=30,
ОС=80-30=50


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili