
Медиана BM треугольника ABC равна 3 и является диаметром окружности, пересекающей сторону BC в ее
середине. Найдите диаметр описанной окружности треугольника ABC

Ответы на вопрос

см рис. во вложении. Обозначим середину ВС точкой К. Известно, что угол, опирающийся на диаметр является прямым. Для данного треугольника угол ВКМ - прямой. Медиана совпадает с высотой в равнобедренном треугольнике, значит МС=МВ и диаметр описанной окружности в два раза больше диаметра заданной, потому что точка М является центром описанной окружности треугольника. МК - срединный перпендикуляр и МТ тоже срединный перпендикуляр. Это видно из второго рисунка, там показаны конгруэнтные треугольники. В пересечении срединных перпендикуляров находится центр описанной окружности. А можно и еще проще рассуждать: ВМ = МС = 3, АМ = МС = 3. Расстояние от точки М до вершин треугольника АВС равное, значит М - центр описанной окружности.
Ответ диаметр равен 6.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili