
Вопрос задан 24.05.2018 в 00:55.
Предмет Геометрия.
Спрашивает Клещева Дарья.
В остроугольном треугольнике АВС величина угла при вершине А относится к величине угла при вершине
С как 7:6. Найдите углы данного треугольника, если отрезок, соединяющий центры его вписанной и описанной окружностей, виден из вершины В под углом 5 градусов.

Ответы на вопрос

Отвечает Бытов Дмитрий.
Я строю описанную окружность, и провожу из точки B диаметр этой окружности BB1 и биссектрису BM (точки B1 и M лежат на окружности, причем M - середина дуги AC, что в решении не пригодится).
По условию угол между ними 5°;
Если соединить другой конец диаметра B1 с вершиной A, то ∠BB1A = ∠BCA;
Если обозначить ∠BCA = 6x; ∠BAC = 7x; то ∠MBA = (180° - 6x - 7x)/2 = 90° - 13x/2;
Ну, и ∠B1AB = 90°;
Получается ∠B1BA - ∠MBA = (90° - 6x) - (90° - 13x/2) = 5°; x = 10°
углы 60°, 70° и 50°


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili